Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174.038
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Birth Defects Res ; 116(4): e2310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563145

RESUMO

INTRODUCTION: In this study, we aimed to investigate the inflammatory factors, oxidative stress, and histopathological consequences of the brain-gut axis in male and female rats prenatally exposed to VPA. METHODS: Pregnant Wistar rats were randomly divided into two groups. The animals received saline, and valproic acid (VPA) (600 mg/kg, i.p.) on embryonic day 12.5 (E12.5). All offspring were weaned on postnatal day 21, and the experiments were done in male and female rats on day 60. The brain and intestine tissues were extracted to assess histopathology, inflammation, and oxidative stress. RESULTS: An increase of interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) and a decrease of interleukin-10 (IL-10) were observed in the two sexes and two tissues of the autistic rats. In the VPA-exposed animals, malondialdehyde (MDA) and protein carbonyl (PC) increased in the brain of both sexes and the intestines of only the males. The total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT) significantly decreased in both tissues of male and female autistic groups. Histopathological evaluation showed that the %apoptosis of the cortex in the autistic male and female groups was more than in controls whereas this parameter in the CA1 and CA3 was significant only in the male rats. In the intestine, histopathologic changes were seen only in the male autistic animals. CONCLUSION: The inflammatory and antioxidant factors were in line in the brain-gut axis in male and female rats prenatally exposed to VPA. Histopathological consequences were more significant in the VPA-exposed male animals.


Assuntos
Transtorno Autístico , Ácido Valproico , Gravidez , Ratos , Masculino , Feminino , Animais , Ácido Valproico/toxicidade , Transtorno Autístico/induzido quimicamente , Antioxidantes/metabolismo , Ratos Wistar , Eixo Encéfalo-Intestino , Estresse Oxidativo , Interleucina-6
2.
Exp Dermatol ; 33(4): e15065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563644

RESUMO

The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.


Assuntos
Reação de Maillard , Pele , Humanos , Estresse Oxidativo , Doença Crônica
3.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564424

RESUMO

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Assuntos
Brassicaceae , Sulfeto de Hidrogênio , Melatonina , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Cádmio/toxicidade , Melatonina/farmacologia , Estresse Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrogênio
4.
Sci Rep ; 14(1): 7715, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565575

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Masculino , Animais , Óleo de Cravo/toxicidade , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Titânio/toxicidade , Dano ao DNA
5.
Sci Rep ; 14(1): 7707, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565590

RESUMO

Neurodegenerative diseases, characterized by progressive neuronal dysfunction and loss, pose significant health challenges. Glutamate accumulation contributes to neuronal cell death in diseases such as Alzheimer's disease. This study investigates the neuroprotective potential of Albizia lebbeck leaf extract and its major constituent, luteolin, against glutamate-induced hippocampal neuronal cell death. Glutamate-treated HT-22 cells exhibited reduced viability, altered morphology, increased ROS, and apoptosis, which were attenuated by pre-treatment with A. lebbeck extract and luteolin. Luteolin also restored mitochondrial function, decreased mitochondrial superoxide, and preserved mitochondrial morphology. Notably, we first found that luteolin inhibited the excessive process of mitophagy via the inactivation of BNIP3L/NIX and inhibited lysosomal activity. Our study suggests that glutamate-induced autophagy-mediated cell death is attenuated by luteolin via activation of mTORC1. These findings highlight the potential of A. lebbeck as a neuroprotective agent, with luteolin inhibiting glutamate-induced neurotoxicity by regulating autophagy and mitochondrial dynamics.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Ácido Glutâmico/metabolismo , Luteolina/farmacologia , Linhagem Celular , Estresse Oxidativo , Morte Celular , Apoptose , Fármacos Neuroprotetores/farmacologia , Autofagia , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Rep ; 14(1): 7744, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565633

RESUMO

This study aimed to determine the effects of resistance training combined with a probiotic supplement enriched with vitamin D and leucine on sestrin2, oxidative stress, antioxidant defense, and mitophagy markers in aged Wistar rats. Thirty-five male rats were randomly assigned to two age groups (old with 18-24 months of age and young with 8-12 weeks of age) and then divided into five groups, including (1) old control (OC: n = 5 + 2 for reserve in all groups), (2) young control (YC: n = 5), (3) old resistance training (OR: n = 5), (4) old resistance training plus supplement (ORS: n = 5), and old supplement group (OS: n = 5). Training groups performed ladder climbing resistance training 3 times per week for 8 weeks. Training intensity was inserted progressively, with values equal to 65, 75, and 85, determining rats' maximal carrying load capacity. Each animal made 5 to 8 climbs in each training session, and the time of each climb was between 12 and 15 s, although the time was not the subject of the evaluation, and the climbing pattern was different in the animals. Old resistance plus supplement and old supplement groups received 1 ml of supplement 5 times per week by oral gavage in addition to standard feeding, 1 to 2 h post training sessions. Forty-eight hours after the end of the training program, 3 ml of blood samples were taken, and all rats were then sacrificed to achieve muscle samples. After 8 weeks of training, total antioxidant capacity and superoxide dismutase activity levels increased in both interventions. A synergistic effect of supplement with resistance training was observed for total antioxidant capacity, superoxide dismutase, and PTEN-induced kinase 1. Sestrin 2 decreased in intervention groups. These results suggest that resistance training plus supplement can boost antioxidant defense and mitophagy while potentially decreasing muscle strength loss.


Assuntos
Condicionamento Físico Animal , Probióticos , Treinamento de Força , Humanos , Idoso , Ratos , Masculino , Animais , Lactente , Pré-Escolar , Ratos Wistar , Antioxidantes/metabolismo , Treinamento de Força/métodos , Mitofagia , Condicionamento Físico Animal/fisiologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Músculo Esquelético/metabolismo
7.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565927

RESUMO

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Assuntos
Derivados de Alilbenzenos , Anisóis , Antioxidantes , Transtorno Depressivo Maior , Humanos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Nitritos/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Privação Materna , Solução Salina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Estresse Oxidativo , Hipocampo/metabolismo , Modelos Animais de Doenças , Comportamento Animal
8.
Clin Ter ; 175(2): 83-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571463

RESUMO

Abstract: Virgin coconut oil (VCO) is a processed edible oil, which is removed from the mature coconuts. It is a colourless water insoluble liquid and obtained by the hot and cold extraction processes. The nutritional components of VCO are mainly contributed to by lauric acid, its primary content. VCO has shown its anticancer, antimicrobial, analgesic, antipyretic and antiinflammatory properties. Because of these medicinal properties, VCO has gained the wider attention among the medical field. Most evidently VCO has shown its potential antioxidant property, because of its phenolic compounds and medium chain fatty acids. It is one of the beneficial compounds used to prevent and treat the oxidative stress induced neurological disorders like stress, depression and Alzheimer's disease. Dietary supplementation of VCO is easy and economical and safer in daily life among all age groups. It is also beneficial for the cardiovascular, respiratory, dermatological, reproductive and bone health. It can also be applied to the skin as a moisturizer in the paediatric age group. Hence, exploration of antioxidant property as well as other beneficial effects of VCO in various health conditions will be valuable.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Criança , Óleo de Coco/uso terapêutico , Óleo de Coco/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo
9.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597299

RESUMO

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Assuntos
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Glutationa Transferase/metabolismo
10.
An Acad Bras Cienc ; 96(1): e20230532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597491

RESUMO

In this work, evaluated the antifungal chemosensitizing effect of the Lippia origanoides essential oil (EO) through the induction of oxidative stress. The EO was obtained by hydrodistillation and analyzed by GC-MS. To evaluate the antifungal chemosensitizing effect through induction of oxidative stress, cultures of the model yeast Saccharomyces cerevisiae ∆ycf1 were exposed to sub-inhibitory concentrations of the EO, and the expression of genes known, due be overexpressed in response to oxidative and mutagenic stress was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) method. Carvacrol and thymol were identified as the main components. The EO was effective in preventing or reducing the growth of the microorganisms tested. The gene expression profiles showed that EO promoted changes in the patterns of expression of genes involved in oxidative and mutagenic stress resistance. The combined use of the L. origanoides EO with fluconazole has been tested on Candida yeasts and the strategy resulted in a synergistic enhancement of the antifungal action of the azolic chemical product. Indeed, in association with EO, the fluconazole MICs dropped. Thus, the combinatorial use of L. origanoides EO as a chemosensitizer agent should contribute to enhancing the efficiency of conventional antifungal drugs, reducing their negative side effects.


Assuntos
Candidíase , Lippia , Óleos Voláteis , Antifúngicos/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Lippia/química , Fluconazol/farmacologia , Estresse Oxidativo
11.
An Acad Bras Cienc ; 96(1): e20221048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597499

RESUMO

The cognitive deficit, which is like Alzheimer's disease and is associated with oxidative damage, may be induced by exposure to streptozotocin. This study aimed to evaluate if the tellurium-containing organocompound, 3j, 5'-arylchalcogeno-3-aminothymidine derivative, interferes with the effects of streptozotocin, as well as to investigate its toxicity in adult mice. Cognitive deficit was induced by two doses of streptozotocin (2.25 mg/kg/day, 48 h interval) intracerebroventricularly. After, the mice were subcutaneously treated with 3j (8.62 mg/kg/day) for 25 days. The effects were assessed by evaluating hippocampal and cortical acetylcholinesterase and behavioral tasks. 3j toxicity was investigated for 10 (0, 21.55, or 43.10 mg/kg/day) and 37 (0, 4.31, or 8.62 mg/kg/day) days by assessing biometric parameters and glucose and urea levels, and alanine aminotransferase activity in blood plasma. 3j exposure did not alter the behavioral alterations induced by streptozotocin exposure. On the other hand, 3j exposure normalized hippocampus acetylcholinesterase activity, which is enhanced by streptozotocin exposure. Toxicity evaluation showed that the administration of 3j for either 10 or 37 days did not cause harmful effects on the biometric and biochemical parameters analyzed. Therefore, 3j does not present any apparent toxicity and reverts acetylcholinesterase activity increase induced by streptozotocin in young adult mice.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Camundongos , Animais , Acetilcolinesterase/metabolismo , Estreptozocina/toxicidade , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/tratamento farmacológico , Estresse Oxidativo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Hipocampo , Modelos Animais de Doenças
12.
Reprod Domest Anim ; 59(4): e14559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591742

RESUMO

Pyometra is a prevalent and severe infectious disease that affects the reproductive systems of cattle worldwide. This study's main goal was to investigate the biomarkers for oxidative stress (OS), adiponectin, leptin and neopterin (NPT) in cows suffering from postpartum pyometra. The study also aimed to determine which bacteria were most commonly implicated in the development of the disease. A total of 74 cows with pyometra were examined and compared to a control group of healthy cows (n = 20). In comparison to the healthy control and post-treatment groups, the pyometra group showed higher mean values of leptin, adiponectin and malondialdehyde (MDA). In contrast, the glutathione (GSH) and superoxide dismutase (SOD) mean values were lower in the pyometra group as compared to the post-treatment and control groups. NPT levels in the post-treatment groups were lower than those in cows with pyometra but comparable to the healthy control group (p > .05). When compared to the other biomarkers, NPT, leptin and adiponectin showed higher sensitivity and specificity in identifying pyometra cases (AUC ≥0.99). The predominant bacterial isolates from the ptomtra-affected cows consisted of Escherichia coli (N = 29; 39.2%), Arcanobacterium pyogenes (N = 27; 36.5%) and Fusobacterium necrophorum (N = 13; 17.6%). Mixed infection was determined in nine samples (12.2%). Conclusively, OS, adiponectin, leptin and NPT play crucial roles in comprehending the development of postpartum pyometra in cows and have the potential to serve as biomarkers for the disease.


Assuntos
Doenças dos Bovinos , Piometra , Feminino , Bovinos , Animais , Piometra/veterinária , Leptina , Adiponectina , Período Pós-Parto , Estresse Oxidativo , Glutationa , Biomarcadores , Doenças dos Bovinos/microbiologia
13.
Sci Rep ; 14(1): 8105, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582792

RESUMO

The response of 14 Hollyhock (Alcea rosea L.) varieties to salinity were evaluated in a field experiment over two growing seasons. Carotenoid, Chl a, Chl b, total Chl, proline and MDA content, CAT, APX and GPX activity and petal and seeds yields were determined in order to investigate the mechanism of salt tolerance exhibited by Hollyhock, and too identify salt tolerant varieties. Overall, the photosynthetic pigment content,petal and seed yields were reduced by salt stress. Whereas the proline and MDA content, and the CAT, APX and GPX activities increased as salt levels increased. However, the values of the measured traits were dependent upon the on the level of salt stress, the Varietie and the interaction between the two variables. Based upon the smallest reduction in petal yield, the Masouleh variety was shown to be the most salt tolerant, when grown under severe salt stress. However, based upon the smallest reduction in seed yield, Khorrmabad was the most tolerant variety to severe salt stress. These data suggest that the selection of more salt tolerant Hollyhock genotypes may be possible based upon the wide variation in tolerance to salinity exhibited by the varieties tested.


Assuntos
Malvaceae , Estresse Oxidativo , Estresse Oxidativo/fisiologia , Antioxidantes/metabolismo , Tolerância ao Sal/genética , Prolina/metabolismo
14.
BMC Womens Health ; 24(1): 225, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582833

RESUMO

OBJECTIVE: Although oxidative stress is a recognized factor of inflammation, the correlation between oxidative balance score (OBS), a biomarker indicating the balance of oxidation and antioxidant, and rheumatoid arthritis (RA), an immune system disease that tends to occur in women, remains unexplored. Hence, the aim of this study was to investigate the potential association between OBS and RA in women. METHODS: Observational surveys were performed by employing information extracted from the National Health and Nutrition Examination Survey (NHANES) for the period 2007-2018. Various statistical techniques were employed to investigate the association between OBS and RA, encompassing multivariable logistic regression analysis, subgroup analyses, smooth curve fitting, and threshold effect analysis. RESULTS: The study included 8219 female participants, including 597 patients with RA. The results showed that higher Total OBS (TOBS) significantly correlated with lower RA prevalence in the entirely modified model [odd ratio (OR) = 0.968; 95% confidence interval (CI) = 0.952 to 0.984; P = 0.0001]. Dietary OBS (DOBS) and lifestyle OBS (LOBS) also negatively correlated with RA. This association was remarkably consistent across TOBS subgroups by age, race, education level, family poverty-to-income ratio (PIR), hypertension and diabetes. Smooth curve fitting and threshold effect analysis also revealed the linear relationship between OBS and RA. CONCLUSIONS: Overall, OBS was negatively associated with RA in female. This study suggested that an antioxidant diet and lifestyle may be promising measures to prevent RA in female.


Assuntos
Antioxidantes , Artrite Reumatoide , Humanos , Feminino , Antioxidantes/metabolismo , Inquéritos Nutricionais , Estudos Transversais , Artrite Reumatoide/epidemiologia , Estresse Oxidativo
15.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583436

RESUMO

The treatment of patients with acute pulmonary embolism (APE) is extremely challenging due to the complex clinical presentation and prognosis of APE related to the patient's hemodynamic status and insufficient arterial blood flow and right ventricular overload. Protective efficacy against cardiovascular diseases of curcumin, a common natural polyphenolic compound, which has antithrombotic properties and reduces platelet accumulation in the circulation by inhibiting thromboxane synthesis has been demonstrated. However, the direct effect of curcumin on APE has rarely been studied. Therefore, the present study aimed to investigate the therapeutic potential of curcumin in APE and associated myocardial injury to provide new insights into curcumin as a promising competitive new target for the treatment of APE. A suspension of 12 mg/kg microspheres was injected intravenously into rats. An APE rat model was built. Before modeling, intragastric 100 mg/kg curcumin was given, and/or lentiviral plasmid vector targeting microRNA-145-5p or insulin receptor substrate 1 (IRS1) was injected. Pulmonary artery pressure was measured to assess right ventricular systolic pressure (RVSP). Hematoxylin and eosin (H&E) staining was performed on liver tissues and myocardial tissues of APE rats. TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling) staining and immunohistochemical (IHC) staining were conducted to measure apoptosis and CyPA-CD147 expression in the myocardium, respectively. Inflammatory indices interleukin-1beta (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were measured by ELISA in cardiac tissues. RT-qPCR and Western blot were performed to determine the expression levels of related genes. In addition, by dual luciferase reporter assay and RIP assay, the relationship between microRNA-145-5p and insulin receptor substrate 1 (IRS1) was confirmed. In results: curcumin improved APE-induced myocardial injury, reduced myocardial tissue edema, and thrombus volume. It attenuated APE-induced myocardial inflammation and apoptosis, as well as reduced lung injury and pulmonary artery pressure. Curcumin promoted microRNA-145-5p expression in APE rat myocardium. MicroRNA-145-5p overexpression protected against APE-induced myocardial injury, and microRNA-145-5p silencing abolished the beneficial effects of curcumin in APE-induced myocardial injury. IRS1 was targeted by microRNA-145-5p. IRS1 silencing attenuated APE-induced myocardial injury, and enhanced therapeutic effect of curcumin on myocardial injury in APE rats. In conclusion, curcumin alleviates myocardial inflammation, apoptosis, and oxidative stress induced by APE by regulating microRNA-145-5p/IRS1 axis.


Assuntos
Curcumina , Hominidae , MicroRNAs , Miocardite , Embolia Pulmonar , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Interleucina-6/metabolismo , Apoptose , Inflamação/tratamento farmacológico , Estresse Oxidativo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/genética , Hominidae/genética , Hominidae/metabolismo
16.
Int J Hyperthermia ; 41(1): 2335201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583875

RESUMO

PURPOSE: Radiotherapy (RT) is the primary treatment for prostate cancer (PCa); however, the emergence of castration-resistant prostate cancer (CRPC) often leads to treatment failure and cancer-related deaths. In this study, we aimed to explore the use of microwave hyperthermia (MW-HT) to sensitize PCa to RT and investigate the underlying molecular mechanisms. METHODS: We developed a dedicated MW-HT heating setup, created an in vitro and in vivo MW-HT + RT treatment model for CRPC. We evaluated PC3 cell proliferation using CCK-8, colony experiments, DAPI staining, comet assay and ROS detection method. We also monitored nude mouse models of PCa during treatment, measured tumor weight, and calculated the tumor inhibition rate. Western blotting was used to detect DNA damage repair protein expression in PC3 cells and transplanted tumors. RESULTS: Compared to control, PC3 cell survival and clone formation rates decreased in RT + MW-HT group, demonstrating significant increase in apoptosis, ROS levels, and DNA damage. Lower tumor volumes and weights were observed in treatment groups. Ki-67 expression level was reduced in all treatment groups, with significant decrease in RT + MW-HT groups. The most significant apoptosis induction was confirmed in RT + MW-HT group by TUNEL staining. Protein expression levels of DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways significantly decreased in RT + MW-HT groups. CONCLUSION: MW-HT + RT treatment significantly inhibited DNA damage repair by downregulating DNA-PKcs, ATM, ATR, and P53/P21 signaling pathways, leading to increased ROS levels, aggravate DNA damage, apoptosis, and necrosis in PC3 cells, a well-established model of CRPC.


Assuntos
Adenocarcinoma , Hipertermia Induzida , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Células PC-3 , Espécies Reativas de Oxigênio/metabolismo , Micro-Ondas , Proteína Supressora de Tumor p53/metabolismo , Hipertermia Induzida/métodos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Reparo do DNA , Apoptose , Estresse Oxidativo , Hipertermia , Adenocarcinoma/radioterapia , DNA/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
17.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 201-207, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584100

RESUMO

Objective: To investigate the effects of reduced nicotinamide adenine dinucleotide phosphooxidase 4 (NOX4) inhibitors GKT137831 and M2-type macrophages on oxidative stress markers NOX4, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the rat hepatic stellate cell line (HSC-T6). Methods: Rat bone marrow macrophages were extracted and induced using interleukin (IL)-4 to differentiate them into M2 phenotype macrophages. HSC-T6 activation was performed with 5 µg/L transforming growth factor ß1 (TGF-ß1). The proliferation condition of HSC-T6 cells stimulated by the NOX4 inhibitor GKT137831 at a concentration gradient of 5 to 80 µmol/L after 48 hours was detected using the Cell Counting Kit-8 (CCK-8) assay. The optimal drug concentration was chosen and divided into an HSC co-culture group (the control group) and five experimental groups: the TGF-ß1 stimulation group, the TGF-ß1 +GKT137831 stimulation group, the M2-type macrophage + HSC co-culture group, the M2-type macrophage +TGF-ß1 stimulation group, and the M2-type + TGF-ß1 + GKT137831 stimulation group. Reactive oxygen species (ROS) production level was detected in each cell using the DCFH-DA probe method. NOX4, α-smooth muscle actin (α-SMA), Nrf2, and HO-1 levels in each group of HSC cells were detected using the qRT-PCR method and the Western blot method. The t-test was used to compare the two groups. The one-way ANOVA method was used to compare multiple groups. Results: Intracellular ROS increased significantly following TGF-ß1 stimulation. ROS relative levels in each cell group were 1.03±0.11, 3.88±0.07, 2.90±0.08, 0.99±0.06, 3.30±0.05, 2.21±0.11, F = 686.1, P = 0.001, respectively. The mRNA and protein expressions of NOX4, α-SMA, Nrf2, and HO-1 were significantly increased (P < 0.05). After the addition of GKT137831, ROS, and NOX4, α-SMA mRNA and protein expression were comparatively decreased in the TGF-ß1 stimulation group (P < 0.05), while mRNA and protein expressions of Nrf2 and HO-1 were increased (P < 0.05). The expression of ROS and NOX4, as well as α-SMA mRNA and protein, produced by HSC were significantly decreased in the co-culture group compared to the single culture group after TGF-ß1 stimulation (P < 0.05). After the addition of GKT137831, ROS, NOX4, α-SMA mRNA, and protein expression were further reduced in the co-culture group compared with the single culture group (P < 0.05), while the mRNA and protein expression of Nrf2 and HO-1 were further increased (P < 0.05). Conclusion: NOX4 inhibitor GKT137831 can reduce RO, NOX4, and α-SMA levels while increasing Nrf2 and HO-1 levels in hepatic stellate cells. After M2-type macrophage co-culture, GKT137831 assists in lowering ROS, NOX4, and α-SMA levels while accelerating Nrf2 and HO-1 levels in hepatic stellate cells, which regulates the balance between oxidative stress and anti-oxidative stress systems, thereby antagonizing the fibrosis process.


Assuntos
Células Estreladas do Fígado , Pirazolonas , Piridonas , Fator de Crescimento Transformador beta1 , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Cirrose Hepática/induzido quimicamente , Estresse Oxidativo , Macrófagos/metabolismo , RNA Mensageiro/metabolismo
18.
Front Public Health ; 12: 1333222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584916

RESUMO

Purpose: Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods: We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results: There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion: We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.


Assuntos
Astronautas , Exposição à Radiação , Humanos , Atmosfera , Exposição à Radiação/efeitos adversos , Estresse Oxidativo , Envelhecimento/genética
19.
DNA Cell Biol ; 43(4): 158-174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588493

RESUMO

Polycystic ovary syndrome (PCOS) refers to an endocrine disorder syndrome that are correlated with multiple organs and systems. PCOS has an effect on women at all stages of their lives, and it has an incidence nearly ranging from 6% to 20% worldwide. Mitochondrial dysfunctions (e.g., oxidative stress, dynamic imbalance, and abnormal quality control system) have been identified in patients and animal models of PCOS, and the above processes may play a certain role in the development of PCOS and its associated complications. However, their specific pathogenic roles should be investigated in depth. In this review, recent studies on the mechanisms of action of mitochondrial dysfunction in PCOS and its associated clinical manifestations are summarized from the perspective of tissues and organs, and some studies on the treatment of the disease by improving mitochondrial function are reviewed to highlight key role of mitochondrial dysfunction in this syndrome.


Assuntos
Doenças Mitocondriais , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Síndrome do Ovário Policístico/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Doenças Mitocondriais/patologia
20.
Chem Commun (Camb) ; 60(31): 4140-4147, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38566603

RESUMO

Superoxide dismutase (SOD) is an important metalloenzyme that catalyzes the dismutation of superoxide radicals (O2˙-) into hydrogen peroxide (H2O2) and oxygen (O2). However, the clinical application of SOD is severely limited due to its structural instability and high cost. Compared with natural enzymes, nanomaterials with enzyme-like activity, nanoenzymes, are more stable, economical and easy to modify and their activity can be adjusted. Certain nanozymes that exhibit SOD-like activity have been created and shown to help prevent illnesses brought about by oxidative stress. These SOD-like nanozymes offer an important solution to the problems associated with the clinical application of SOD. In this review, we briefly introduce neurodegenerative diseases, present the research progress of SOD-like nanoenzymes in the diagnosis and treatment of brain diseases, review their mechanism of action in the treatment and diagnosis of brain diseases, and discuss the shortcomings of the current research with a view to providing a reference for future research. We expect more highly active SOD-like nanoenzymes to be developed with a wide range of applications in the diagnosis and treatment of brain diseases.


Assuntos
Encefalopatias , Superóxido Dismutase , Humanos , Superóxido Dismutase/metabolismo , Peróxido de Hidrogênio/química , Superóxidos/química , Estresse Oxidativo , Oxigênio , Encefalopatias/diagnóstico , Encefalopatias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA